
Project Overview
The intent of this project is to implement the classic Namco arcade game Dig Dug on an FPGA.
In Dig Dug, the player controls a character, Dig Dug, who interacts with a subterranean
environment while being pursued by Pookas and Fygars. Both Pookas and Fygars can kill the
protagonist by contact and Fygars can also breathe fire. The goal of the game is to eliminate
these enemies by either inflating them with an air pump that Dig Dug carries, or by leading
enemies into tunnels and dislodge rocks to crush the enemies. The subterranean game map
appears to allow both Dig Dug and his enemies to move continuously, but the x and y index of
tunnels is actually restricted to a 14 x 15 grid. When only one enemy remains, it will attempt to
flee to the surface instead of pursuing Dig Dug.

Dig Dug’s movements are controlled by the player. As Dig Dug moves and create tunnels, a
map of which portions of the grid have been tunneled to that point is continuously updated. The
behavior of Pooka’s and Fygars is controlled using multiple instances of two different modules.
Events such as rocks falling, Dig Dug attacking, or Dig Dug dying are determined by a module
governing collision logic. This module returns information regarding the events of the game to
the other modules. Additional modules exist to regulate inputs, maintain the game map,
generate appropriate graphics, decide which graphics to display and which audio to play.

Modules

Game State

game_map - Leif

Inputs Outputs

• level_reset (game_state)

• Tunnel_init (level_initializer)
• Level_number(game_state)
• dig_dug_location (dig_dug)

• tunnel_map

The map module stores and updates a map of which grid sectors have been tunneled out by dig
dug. The map is stored as a 13x14 array of for bits. The array indices represent the X and Y
index of each specific grid location, and each of the four bits represents the top, bottom, left, and
right side of that grid square.

On initialization or level reset, the map module writes zeros to the whole array. Two clock cycles
later, the module will write 1’s to the appropriate locations in the array for the starting tunnels.
This information is hard coded in the module, and the assignment lines used for this were
generated by a python script from a list of tuples representing the grid locations of the starting
tunnels. This was done for 8 unique levels, although the use of a python script to generate these
lines of systemverilog allows the game to be rapidly expanded to more levels with minimal effort
or error.

The map module takes in dig dug’s position in pixels and bitshifts his position to determine the

grid square location. Based off of the direction and gird square location of dig dug, the map
module will overwrite the portion of the map array where dig dug is located to indicate that the
grid square has been tunneled. When any of the walls are demarcated as tunneled, the graphics
will interpret the center of the grid square to be tunneled.

The map information is continuously sent to the pathfinding module to dictate the movement of
enemies and govern the behavior of rocks.

game_state - Rachel

Inputs Outputs

Inputs
• clock

Outputs

• reset
• dig_dug_state

• pooka_state [3:0]
• fygar_state [3:0]

• flee (unimplemented)
• high_score

• score
• lives
• level
• game_over

• level_reset
• death_reset

Keeps track of the global game state. These include the score, lives, and level.
Whenever a level is completed through the deaths of all enemies, this module also sends the
reset signal to all entities to initialize the next level.
 The score is incremented when an enemy is killed, 400 if they were inflated and 1000 if
they were crushed by a rock.
 The number of lives begins at 3 and goes down by one every time dig dug dies.
Whenever dig dug is killed, a reset signal (death_reset) is sent to all entities to reset their
positions (but not their states). Whenever the number of lives reaches 0, game_over is set to 1
until the game is reset.
 The level begins at one on reset and increments every time all enemies are defeated.
Whenever the level increments, level_reset is pulled high for a few clock cycles to alert the
enemies to reset their locations and states to the new init values. The user can see the level
number in the bottom left of the screen.

Level_initializer - Leif

Inputs Outputs

• level_reset
• level_number

• tunnel_init
• pooka_loc_init x4

• fygar_loc_init x4
• rock_loc_init x4
• pooka_state_init x4
• fygar_state_init x4

• rock_state_init x4

The level initializer module stores the starting position of each rock, pooka, and fygar in addition
to their states at the beginning of each level. Each entity starts in a baseline ‘normal’ state. To
create these level layouts, photographs of various levels of the original dig dug game were
scaled to a consistent size and overlaid with a grid to determine the positions of each entity in
terms of the grid. This was performed using layers in Scribus, odd as that seems. I was familiar
with the software and it quickly did what I needed it to. With the grid overlaid on the original level
images, the locations of each entity were entered into a python script as tuples of (grid_x,
grid_y) and the initial positions in terms of pixels were calculated. The script then generated the
systemverilog lines needed to set the initial locations and states of each entity at the beginning
of each level. When the level initializer module receives an init_level signal, it sets each entities
initial conditions. Each instantiation of each entity takes the appropriate position and state
information and, if an appropriate initialization signal is received, each instantiation will set the
values from the level initializer as their values before starting the round. Instances of enemies
and rocks not in use for a particular level are initialized to the death state.

Collision - Leif

Inputs Outputs

• pooka_locations
• fygar_locations
• rock_locations
• dig_dug_location

• weapon_location
• pooka_states
• fygar_states
• rock_states

• dig_dug_state
• fire_tip_location
• Fygar_orientations
• weapons controls

• collision_event x9
• fygar rock collision x4
• pooka rock collision x4

The collision module takes in the position and state of all entities, in addition to the position of

dig dug’s weapon, the tip of each fygar’s fire, and the weapons controls. The collision module
relies on many non-mutually-exclusive conditional statements to determine if an event has taken
place. This module determines when an entity is crushed by a rock or inflated by dig dug, in
addition to if dig dug is caught by an enemy, crushed by a rock, or burned to a crisp by a fygar.

Rock collisions test if any of the entities are within a certain proximity of the underside of a rock,
and if that rock is in a falling state. If both conditions evaluate to true, the collision module will
assert two values to the entity in question. The first is a collision code indicating that the entity
has been hit by a rock. This will be used by the entities FSM to move between states. The other
is a rock collision indicator, indicating which rock hit the entity. This is necessary because the
behavior of a crushed enemy (ideally) depends on how far the rock falls, and it is necessary for
the entity’s FSM to reference the state of the falling rock.

Inflation collisions test the state of the enemy, the state of dig dug, and the relative position of
dig dug’s weapon and the enemy. If the weapon is in contact with the enemy and the state of the
enemy is such that it can be inflated (i.e. it is not already dead or being inflated), and the
controls input indicates that the attack control is high, then the collision module will send a
collision code indicating that an inflation event has occurred to the specific instantiation of that
enemy. This module posed a unique challenge due to integration and team communication
issues pertaining to the nature of the weapons control signal and diverging assumptions of a
proper dig dug model resulting from different experiences on different emulators. More details on
inflation collision handling are available in the Fygar module description. The original
implementation of this system is preserved as commented out blocks in the submitted code.

All of dig dug’s potential deaths take place in one large conditional statement which has a
unique alternative condition for all of dig dug’s possible deaths. Rock collisions are detected in a
manner very similar to how they are detected for other entities. Contact collisions rely on
proximity testing and basic state testing (dig dug should not die from contact with a dead,
crushed, or inflated enemy). Fire deaths are detected by determining if dig dug’s x position is
between a fygar in the fire state, and the position of that fygar’s fire’s tip. Each of these potential
situations results in the collision module asserting a collision code indicating that dig dug has
died.

Entities

Entities - Rachel

Contains the Dig Dug, Pooka, Fygar, and Rock blobs and connects all inputs and outputs
directly between them and top_level. Purely for organization.

Pooka - Leif

Inputs Outputs

• dig_dig_location
• flee
• speed

• collision_event
• tunnel_map
• level_reset
• death_reset

• pooka_loc_init
• pooka_state_init

• location
• state

The pooka module is effectively a simplified version of the fygar FSM. Specifically, the pooka
does not breathe fire. A detailed description of the fygar module is available, and for non-fiery
purposes, the pooka should be considered to function in the same manner as the fygar module.

Fygar - Leif

Inputs Outputs

• dig_dig_location

• flee
• speed
• collision_event
• tunnel_map

• level_reset
• death_reset
• fygar_location_init
• fygar_state_init

• pooka_location

• pooka_state

A somewhat simplified diagram of fygar’s FSM is presented at the end of this report.

The fygar module controls the state and movement of the fygar sprite. The Fygar module is a
12-state FSM with additional features included. The fygar module takes in a tunneling Boolean,
a death reset signal, a level reset signal, an initial location and state, a collision indicator, an
indicator to communicate which rock is squishing the fygar, a speed indicator, dig dug’s y-
position, and each rock’s state. The fygar module outputs the fygar’s position, the position of the
tip of fygar’s fire, the fygar’s state, and whether or not the fygar is actively being inflated.

In the normal state, the fygar will move in the operating direction specified by the pathfinding
module one pixel every N clock cycles if and only if the fygar is centered in a grid block. This
allows the pathfinder to continually update the direction the fygar should be moving without
regard for what state the fygar is in. By only changing the actual direction the fygar is moving in
when the fygar is centered in a grid square, the fygar is able to cleanly make corners and avoid
wandering into the rock when it is not in tunneling state. If the fygar is in the normal state and
the tunneling Boolean is pulled high, the fygar will transition to the tunneling state.

In the tunneling state, the fygar will constantly update its direction of movement to reflect what
the pathfinder is currently specifying. This allows the pathfinder to alternate directions of
movement rapidly and without regard for the fygar’s position in order to give the tunneling fygar
the appearance of the up/down, then left/right movement in the classic dig dug game. One the
fygar has reached another tunnel, the tunneling Boolean will be pulled low and fygar will return
to the normal state.

In both the tunneling and normal state, the number of clock cycles it takes before the fygar
moves by a single pixel is determined by a case statement in an always@(speed) block. The
speed signal can take on five distinct values. Each different value of the speed signal will linearly
detract the parameter SPEED_INCREMENT from the parameter MIN_SPEED to set the N
number of cycles between a single pixel movement. If speed adjustment had been implemented
in the game state module as initially planned, this would have enabled the speed of enemies to
increase throughout gameplay, making the game more difficult at higher levels.
SPEED_INCREMENT and MIN_SPEED were parameterized to allow for the game to be tuned
after completion.

If the fygar is in the normal, tunneling, charging, or fire states and receives a collision signal
indicating an inflation event, the fygar will transition to inflating_1 state. Ideally, upon a timer
expiring and the continued or additional pulse input to the weapon control signal in the collision
module, the fygar would then transition to the inflating_2 state. Similarly, upon a timer expiring
and lack of a continued or additional pulse input to the weapon control signal in the collision
module, fygar would transition back to the normal state. The impetus for transition from
inflating_2 to inflating_3 and eventually inflating_4 would be controlled in the same manner, with
the exception that upon exiting the fourth inflating state with a weapons signal, the transition
would be to the death state. The timer used for these transitions was parameterized to allow for
the game to be tuned after completion. Unfortunately, due to module integration issues and
communication difficulties surrounding the nature of the weapons control signal (i.e. when it
would be asserted, the form it would take, etc.) and diverging understandings of how the dig dug
game should operate due to experience playing different ports, this escalatory and de-escalatory
state behavior was eventually put aside in favor of a one-shot, one-kill, “dirty dig dug Harry”
functionality in order to preserve playability.

If a fygar is moving horizontally and is in the normal state (i.e. not being inflated, tunneling,
squished, dead, or already breathing fire.) there are two alternative conditions which can
transition the fygar into the charging (preparing to breathe fire) state. The first is a ‘dumb’ control
based on a long timer. The intent behind this is to allow the fygar to breathe fire at seemingly
random, pointless intervals as he does in the original game. The second condition which can
result in fygar breathing fire is a targeted firing mechanism that tests if dig dug’s y position is
roughly similar to the fygars. This condition also requires a few of the middle bits in dig dug’s y
position to be greater than a given value in order to add a bit of psuedorandomization to the
targeted firing and prevent the fygar from continuously breathing fire while dig dug is in a similar
y-position. These functions originally relied on a $random 32-bit value to determine when fygar
should breathe fire, but that approach led to (undesirably) unpredictable behavior and was
replaced with a more simplistic psuedorandomization effect which, in my opinion, still emulates
the original game fairly well.

When fygar does enter the charging state, a timer is started. When that timer runs out, the fyar
will advance to fire_1, fire_2, and fire_3 on a time-schedule. In each of the fire states, the fygar’s
fire’s tip’s position will change to reflect a longer fire sprite. The fygar’s fire’s tip’s position is also
sent to the collision module to determine if dig dug was in contact with the fire.

When fygar is in the charging, fire, inflating, or normal state (i.e. not tunneling or dead), the

collision module may report a rock collision. In an ideal implementation, the fygar will transition
to the squished state where it’s y-position will be decremented at the same rate as the rock that
is pushing it down in the tunnel system until the rock progressed to the death state. The rate at
which the fygar falls was parameterized to allow the rock-fall speed to be used for the fygar’s
(identical) fall speed. This functionality suffered from an issue in the feedback system used by
collision to identify which rock is crushing the fygar, and the fygar’s state transition rules. The
original implementation of this system is preserved as commented out blocks in the submitted
code. The crushing functionality was then replaced with a timer during which the fygar would
appear as a crushed, falling sprite before transitioning to the death state.

rock - Rachel

Inputs Outputs

● clock
● level_reset
● falling
● init_x
● init_y
● init_state

● x_out
● y_out
● state

 Controls the logic of the rock entity. The rock entity is static as long as there is no tunnel
below it. When the tile below it is tunneled out, the rock entity will start a timer after which it will
begin free fall, where it will move downward until it encounters a wall. Any other entities hit
during the rock’s freefall will die. When the rock hits a barrier, it will play a breaking apart
animation and disappear.
 Whenever the rock receives a level_reset signal, it sets its own x, y, and state to those defined
by init_x, init_y, and init_state, respectively. The rock will maintain a ‘normal’ state until it
receives a ‘falling’ signal, after which it will move to the ‘waiting’ state and begin a timer. After
that timer expires, the rock will enter the ‘falling’ state and move downward. While the rock is in
the ‘falling’ state, collision with pooka, fygar, and dig dug will kill them. When falling is pulled
low again, the rock will enter the ‘breaking’ state and finally the ‘dead’ state after a certain
number of clock cycles.

dig_dug - Rachel

Inputs Outputs

● clock_in
● level_reset
● death_reset
● move
● attack
● facing_tunnels
● blocked
● collision_event

● location_x
● location_y
● weapon_x
● weapon_y
● state
● direction
● weapon_state
● moving
● digging
● inflate_event

Controls the location and state of the player character, Dig Dug. Dig Dug is controlled by
the player inputs as passed in by the control module. When Dig Dug moves into a non-tunneled
tile that does not contain a rock, he tunnels through it, therefore changing the game board.
Aside from moving in the four cardinal directions, Dig Dug can also attack by sending a
telescoping tether in the direction he is facing. If the tether collides with an enemy, the enemy
and Dig Dug will be frozen in place and the player can repeatedly input or hold down the attack
command to inflate and pop the enemy.

Upon a reset, dig_dug will be returned to the middle of the screen and have his state
reset back to ‘normal’.
 The move inputs determine Dig Dug’s movement (up, down, left, right, none), but Dig Dug can
only move along a row or column he is properly aligned with, so if they are not aligned they must
continue moving along a direction until they are aligned with the grid. The blocked variable
informs Dig Dug to the presence of rocks to his immediate left, right, up, and down, disallowing
movement in that direction. When Dig Dug is moving, even if he is hitting a barrier, ‘moving’
should be pulled high to inform the graphics module to play the walk animation.

Whenever commanded to attack, Dig Dug will send out his tether and be locked in place
until it hits a barrier, updating weapon_x and weapon_y and setting the weapon_state to
‘deployed’. If Dig Dug’s weapon encounters an enemy, until he moves again, he will be able to
input the attack command again to pull inflate_event high for one clock cycle and inflate the
enemy by one step. Dig Dug will then ignore the attack input until a certain number of clock
cycles have passed.

If Dig Dug becomes squished or killed, as notified through a collision event, he will
maintain either the ‘squished’ or ‘dying’ state for a certain number of clock cycles, after which he
should enter the ‘dead’ state.

The variable facing_tunnels informs Dig Dug of tunnel barriers in the direction he is
facing. If it indicates that the closest tunnel (the one that Dig Dug’s ‘nose’ is in) is indicated as
closed off, digging should be high to inform the graphics module to play digging animations.
This variable also controls how far Dig Dug’s weapon goes until it retracts, which is either until it
hits the closest blocked tunnel or until it hits its max length.

pathfinding - Rachel

Inputs Outputs

● clock
● reset
● flee
● seed
● tunnel_map
● x_in [12:0]
● y_in[12:0]
● dig_dug_direction
● rock_state

● direction_out [7:0]
● tunnelling [7:0]
● falling [3:0]
● facing_tunnels
● blocked

 Handles all entity decisions that require use of the tunnel map. For pooka and fygar,
this module will inform the entity which direction it should go and if it should be tunnelling or

not. For rock, it should inform it whether it should be falling or not. For Dig Dug, it informs the
module of the tunnels in front of it and the presence of rocks to his sides.
 For Pooka and Fygar’s pathfinding, the module will first figure out what directions it can
move in (where the tunnel is open) and then what directions it wants to move in (first priority:
not turning around, second priority: moving naively towards Dig Dug). Whenever moving
through these priorities, if the path becomes ambiguous between two options, the decision is
made by the pseudo-random seed boolean input.
 For the falling output, the output is high if the space below the rock is open (not a wall).
 The facing_tunnels variable will be high for the first tunnel if the tile that Dig Dug’s ‘nose’
is in is non tunnelled and high for the tunnels after it if they are not dug in the direction
perpendicular to Dig Dug’s. The blocked variable should be high for the directions where Dig
Dug’s side is touching a rock (corners do not count).

offset_coords - Rachel

Inputs Outputs

● x_in [12:0]
● y_in [12:0]

● x_out [12:0]
● y_out [12:0]

 A helper function for the pathfinder. Converts the coordinates of Dig Dug
and all Pooka, Fygar, and Rock entities from using the background origin as a reference
point to using the top left corner of the playfield as a reference point. To assist with
pathfinding, it also clips the y of any entity between the surface and the first set of normal
tunnels to 1, so for any location where an entity can move horizontally the y value will be
divisible by 16.

User Interface

graphics - Rachel

Contains the sprite blobs. Mostly acts as an organizational wrapper for the blob
modules, but also determines the rendering order of the different blobs, with the background
being on the bottom, followed by the tunnels, entities, lives, and text modules. Outputs the
finalized pixel.

dig_dug_blob, pooka_blob, fygar_blob, rock_blob

Inputs Outputs

● clock
● reset
● moving (Dig Dug only)
● digging (Dig Dug only)
● direction
● state
● hcount

● pixel

● vcount
● x
● weapon_x (Dig Dug only)
● y
● weapon_y (Dig Dug only)

 The entity blobs take in the location and state information from the respective entities as well
as the hcount and vcount from the vga module and output a pixel to be rendered at the given
coordinates. For each entity, all of the different sprites comprising the animations are stored
in the BRAM as COE files (one image file and 3 color maps, as generated by the staff
provided python script). Based on the state input, the module selects which of those sprites to
render. An internal counter is maintained to alternate between sprites for animated states
such as walking. The direction input helps determine if the sprite needs to be rotated or
mirrored from the source file before being rendered. Note that due to all of the calculations
that need to be made prior to rendering the output, the system needs is pipelined and a delay
is added to the hsync values to properly match with the rest of the image.

bg_blob - Rachel

Inputs Outputs

● clock
● debug
● hcount
● vcount

• pixel

The bg blob takes in the hcount and vcount from the vga module and outputs a pixel to
be rendered at the given coordinates. The debug pin can be pulled high to swap the
background image out for one with the grid overlaid. Due to the delay in fetching values from
the BRAM, a delay parameter is also added to the hcount.

game_over_blob, lives_blob - Rachel

Inputs Outputs

● clock
● debug
● hcount
● vcount
● lives (lives blob only)
● game_over (game over blob only)

• pixel

The game over and lives blobs are the simplest blob modules, as they simply render a
static image from that stored in BRAM. Which sprites should be rendered is determined by the

lives and game_over variables.

tunnels_blob - Rachel

Inputs Outputs

● clock
● reset
● hcount
● vcount
● tunnels

• pixel

The tunnels blob takes in the hcount and vcount from the vga module and outputs a
pixel to be rendered at the given coordinates. At each grid place of the tunnel map, the module
determines which tunnel (if any) to render and what rotation needs to be applied to the sprite to
match what is indicated by the tunnel map. Since each tunnel is 16 pixels wide, conveniently
the tunnel index can be easily determined by offsetting the origin and bit shifting by 4, and the
(x,y) of the point within each individual tunnel sprite can be found with those 4 least significant
bits. Due to the very large number of steps going into determining the correct output pixel, this
blob is carefully pipelined and the delay parameter added to hcount.

score_blob - Rachel

Inputs Outputs

● clock
● reset
● hcount
● vcount
● score

• pixel

 The score blob takes in a score in binary and renders it in decimal on the screen. The
module converts to decimal using the binary_to_decimal module and renders the 7 digit
outputs in turn. For digits returned with a value of 10, no number is rendered.

binary_to_decimal - Rachel

Inputs Outputs

● clock
● reset
● score

● digits [6:0]

 Takes in a binary representation of an integer and outputs the 7 decimal digits used to
represent them in the score blob. For numbers higher than 9,999,999, the output is clipped to

9,999,999. The module works by calculating the most significant decimal digit’s decimal value
through a series of inequality comparisons, then subtracting that digit’s value (i.e. subtract
2,000 from 2,456) from a running total and repeating until the ones place.

xvga - (preexisting)

Inputs Outputs

• clock • hsync

• vsync
• hcount
• vcount
• clock

• blank

 Performs the same function as in the pong lab. Takes in a clock and outputs hsync, vsync,
hcount, vcount, clock, and blank to send to the various blob and graphics modules.

controls - Rachel

Inputs Outputs

● clock
● reset
● up
● down
● left
● right
● attack
● use_accel
● accel_x_sign
● accel_y_sign
● accel_x
● accel_y

● move_out
● attack_out

 Handles input signals to the FPGA and translates them into signals for Dig Dug.
Debounces all button inputs (up, down, left, right, and attack). If use_accel is high, the
module will use the accelerometer inputs to determine the direction, otherwise the face
buttons will be used. When the face button controls are used, the direction output is
prioritized as up, down, left right. When the accelerometer is used, the direction with the
highest magnitude of displacement is used, and when all directions are below a set
threshold, move_out is set to indicate no movement. Note that + y for the accelerometer
input is right for Dig Dug’s controls and + x is up. The signal attack_out is simply tied
directly to the debounced attack input.

accelerometer - course staff, modified by Rachel

Inputs Outputs

● clock
● miso

● sclk
● mosi
● csn
● accel_x
● accel_y
● accel_z
● accel_x_sign
● accel_y_sign
● seed

 Translates the signals from the FPGA’s onboard accelerometer into filtered
x, y, and z magnitudes and direction indicators. This is modified from the accelerometer
code provided by the course staff. The seed output is the least significant bit of the raw z
acceleration and is used for pseudo-randomness in the pathfinder module.

Audio Decision - Leif

Inputs Outputs

• Dig_Dug_loc

• Death_contact
• Death_fire
• Death_squish
• Fygar_fire

• audio

 Audio functionality was ultimately scrapped in favor of focusing on game functionality. The
planned implementation for audio is included here. Due to the limited number of sounds
required, each would have been placed at a different address on the SD card, and upon
game initialization, the audio module would sequentially read the first 1024 bytes of each
sound and store said bytes in separate 1024 byte FIFO’s. Using simple conditional logic,
the module would determine which sound should be played. When a particular sound is to
be played, the relevant FIFO would be engaged, as would an address counter loop. After
the first 512 bytes are pulled from the FIFO, the address counter would be incremented and
the next 512 bytes would be pulled from the next sector on the SD and used to populated
the tail-end of the FIFO. Audio samples would be pulled from the FIFO every Z clock
cycles, with Z being determined by the ratio of the clock rate and the sample rate of the
audio file.

Summary
 By using the FPGA, we are able to run enemy logic, game state, and graphics rendering

in parallel. Though this presents unique challenges in synchronization, it also allows us to meet

our timing requirements with ease. We were able to create a small approximation of the original

Dig Dug with some features scaled back within 6 weeks. Though there were many rough

patches and communication issues as we attempted to develop features in time, the resulting

product runs well and can be clearly recognized as Dig Dug.

